

Averting biodiversity collapse in tropical forest protected areas

A list of the authors and their affiliations appears at the end of the paper.

The rapid disruption of tropical forests probably imperils global biodiversity more than any other contemporary phenomenon¹⁻³. With deforestation advancing quickly, protected areas are increasingly becoming final refuges for threatened species and natural ecosystem processes. However, many protected areas in the tropics are themselves vulnerable to human encroachment and other environmental stresses⁴⁻⁹. As pressures mount, it is vital to know whether existing reserves can sustain their biodiversity. A critical constraint in addressing this question has been that data describing a broad array of biodiversity groups have been unavailable for a sufficiently large and representative sample of reserves. Here we present a uniquely comprehensive data set on changes over the past 20 to 30 years in 31 functional groups of species and 21 potential drivers of environmental change, for 60 protected areas stratified across the world's major tropical regions. Our analysis reveals great variation in reserve 'health': about half of all reserves have been effective or performed passably, but the rest are experiencing an erosion of biodiversity that is often alarmingly widespread taxonomically and functionally. Habitat disruption, hunting and forest-product exploitation were the strongest predictors of declining reserve health. Crucially, environmental changes immediately outside reserves seemed nearly as important as those inside in determining their ecological fate, with changes inside reserves strongly mirroring those occurring around them. These findings suggest that tropical protected areas are often intimately linked ecologically to their surrounding habitats, and that a failure to stem broad-scale loss and degradation of such habitats could sharply increase the likelihood of serious biodiversity declines.

Tropical forests are the biologically richest ecosystems on Earth¹⁻³. Growing concerns about the impacts of anthropogenic pressures on tropical biodiversity and natural ecosystem services have led to increases in the number and extent of protected areas across the tropics¹⁰. However, much remains unknown about the likelihood of biodiversity persisting in such protected areas. Remote-sensing technologies offer a bird's-eye view of tropical forests and provide many important insights^{6,11-13}, but are largely unable to discern crucial onthe-ground changes in forest biodiversity and ecological functioning¹⁴.

To appraise both the ecological integrity and threats for tropical protected areas on a global scale, we conducted a systematic and uniquely comprehensive assessment of long-term changes within 60 protected areas stratified across the world's major tropical forest regions (Supplementary Fig. 1). To our knowledge, no other existing data set includes such a wide range of biodiversity and threat indicators for such a large and representative network of tropical reserves. Our study was motivated by three broad issues: whether tropical reserves will function as 'arks' for biodiversity and natural ecosystem processes; whether observed changes are mainly concordant or idiosyncratic among different protected areas; and what the principal predictors of reserve success or failure are, in terms of their intrinsic characteristics and drivers of change.

To conduct our study we amassed expert knowledge from 262 detailed interviews, focusing on veteran field biologists and environmental scientists who averaged nearly 2 decades of experience

(mean \pm s.d., 19.1 \pm 9.6 years) at each protected area. Each interviewed researcher completed a detailed 10-page questionnaire, augmented by a telephone or face-to-face interview (see Supplementary Information). The questionnaires focused on longer-term (approximately 20–30-year) changes in the abundance of 31 animal and plant guilds (trophically or functionally similar groups of organisms), which collectively have diverse and fundamental roles in forest ecosystems (Table 1). We also recorded data on 21 potential drivers of environmental change both inside each reserve and within a 3-km-wide buffer zone immediately surrounding it (Table 1).

Our sample of protected areas spans 36 nations and represents a geographically stratified and broadly representative selection of sites across the African, American and Asia-Pacific tropics (Supplementary Fig. 1). The reserves ranged from 160 ha to 3.6 million ha in size, but most (85%) exceeded 10,000 ha in area (median = 99,350 ha; lower decile = 7,000 ha; upper decile = 750,000 ha). The protected areas fall under various International Union for Conservation of Nature (IUCN) reserve classifications. Using data from the World Database on Protected Areas (http://www.wdpa.org), we found no significant difference (P = 0.13) in the relative frequency of high-protection (IUCN Categories I–IV), multiple-use (Categories V–VI) and

Table 1 \mid The 31 animal and plant guilds, and the 21 environmental drivers assessed both inside and immediately outside each protected area

Potential environmental drivers

Broadly forest-dependent guilds	
Apex predators	Changes in natural-forest cover
arge non-predatory species	Selective logging
Primates	Fires
Opportunistic omnivorous mammals	Hunting
Rodents	Harvests of non-timber forest products
Bats	Illegal mining
Inderstory insectivorous birds	Roads
Raptorial birds	Automobile traffic
arger frugivorous birds	Exotic plantations
arger game birds	Human population density
izards and larger reptiles	Livestock grazing
/enomous snakes	Air pollution
Non-venomous snakes	Water pollution
errestrial amphibians	Stream sedimentation
Stream-dwelling amphibians	Soil erosion
reshwater fish	River & stream flows
Dung beetles	Ambient temperature
Army or driver ants	Annual rainfall

Flooding

Windstorms

Aquatic invertebrates

Other functional groups Ecological specialists

Migratory species

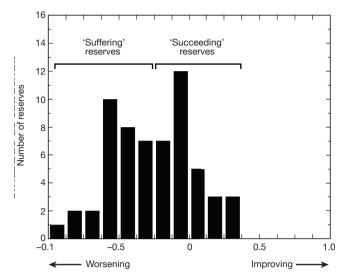
Lianas and vines

Human diseases

Exotic animal species

Exotic plant species

Eniphytes


Large-seeded old-growth trees

Species requiring tree cavities

Disturbance-favouring guilds

Pioneer and generalist trees

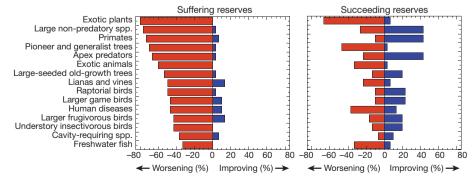
Disease-vectoring invertebrates Light-loving butterflies Drought severity or intensity

Figure 1 Distribution of the 'reserve-health index' for 60 protected areas spanning the world's major tropical forest regions. This relative index averages changes in 10 well-studied guilds of animals and plants, including disturbance-avoiding and disturbance-favouring groups, over the past 20 to 30 years.

unclassified reserves between our sample of 60 reserves and all 16,038 reserves found in the same tropical nations (Supplementary Fig. 2). We also found no significant difference (P=0.08) in the geographical isolation of our reserves (travel time to the nearest city with greater than 50,000 residents) relative to a random sample of 60 protected areas stratified across the same 36 nations (Supplementary Fig. 3).

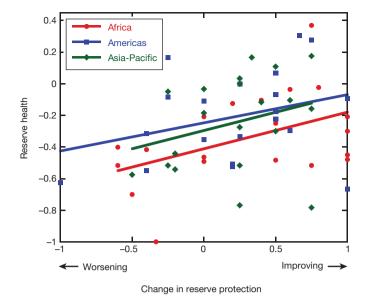
We critically assessed the validity of our interview data by comparing them to 59 independent time-series data sets in which change in a single guild or environmental driver was assessed for one of our protected areas. Collectively, our meta-analysis included some data on 15 of the guilds, 13 of the drivers and 27 of the protected areas in our study (Supplementary Table 1). Most (86.4%) of the independent data sets supported our interview results, and in no case did an independent test report a trend opposite in sign to our interview-based findings.

Our analyses suggest that the most sensitive guilds in tropical protected areas include apex predators, large non-predatory vertebrates, bats, stream-dwelling amphibians, terrestrial amphibians, lizards and larger reptiles, non-venomous snakes, freshwater fish, large-seeded old-growth trees, epiphytes and ecological specialists (all P < 0.0056, with effect sizes ranging from -0.36 to -1.05; Supplementary Table 2). Several other groups were somewhat less vulnerable, including primates, understory insectivorous birds, large frugivorous birds,


raptorial birds, venomous snakes, species that require tree cavities, and migratory species (all P < 0.05, with effect sizes from -0.27 to -0.53). In addition, five groups increased markedly in abundance in the reserves, including pioneer and generalist trees, lianas and vines, invasive animals, invasive plants and human diseases (all P < 0.0056, with effect sizes from 0.44 to 1.17).

To integrate these disparate data, we generated a 'reserve-health index' that focused on 10 of the best-studied guilds (data for each available at ≥ 80% of reserves), all of which seem to be sensitive to environmental changes in protected areas. Six of these are generally 'disturbance avoiders' (apex predators, large non-predatory vertebrates, primates, understory insectivorous birds, large frugivorous birds and large-seeded old-growth trees) and the remainder seem to be 'disturbance-favouring' groups (pioneer and generalist trees, lianas and vines, exotic animals and exotic plants). For each protected area, we averaged the mean values for each group, using negative values to indicate increases in abundance of the disturbance-favouring guilds.

The reserve-health index varied greatly among the different protected areas (Fig. 1). About four-fifths of the reserves had negative values, indicating some decline in reserve health. For 50% of all reserves this decline was relatively serious (mean score $<\!-0.25$), with the affected organisms being remarkable for their high functional and taxonomic diversity (Fig. 2). These included plants with varying growth forms and life-history strategies, and fauna that differed widely in body size, trophic level, foraging strategies, area needs, habitat use and other attributes. The remaining reserves generally exhibited much more positive outcomes for biodiversity (Fig. 2), although a few disturbance-favouring guilds, such as exotic plants and pioneer and generalist trees, often increased even within these areas.


An important predictor of reserve health was improving reserve management. According to our experts, reserves in which actual, on-the-ground protection efforts (see Supplementary Information) had increased over the past 20 to 30 years generally fared better than those in which protection had declined; a relationship that was consistent across all three of the world's major tropical regions (Fig. 3). Indeed, on-the-ground protection has increased in more than half of the reserves over the past 20 to 30 years, and this is assisting efforts to limit threats such as deforestation, logging, fires and hunting within these reserves (Supplementary Table 3), relative to areas immediately outside (Supplementary Table 4).

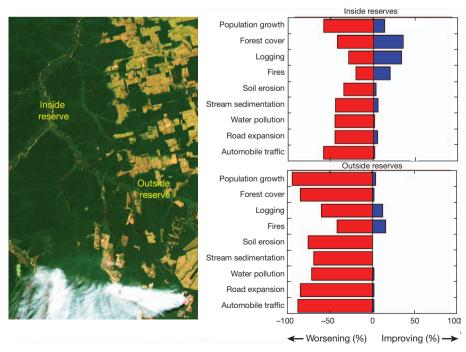
However, our findings show that protecting biodiversity involves more than just safeguarding the reserves themselves. In many instances, the landscapes and habitats surrounding reserves are under imminent threat^{5,6,15} (Fig. 4 and Supplementary Tables 3 and 4). For example, 85% of our reserves suffered declines in surrounding forest cover in the last 20 to 30 years, whereas only 2% gained surrounding forest. As shown by general linear models (Supplementary Table 5), such changes can seriously affect reserve biodiversity. Among the

Figure 2 | Percentages of reserves that are worsening versus improving for key disturbance-sensitive guilds, contrasted between 'suffering' and 'succeeding' reserves (which are distinguished by having lower (< -0.25) versus higher (\ge -0.25) values for the reserve-health index, respectively). For disturbance-

favouring organisms such as exotic plants and plants, pioneer and generalist trees, lianas and vines, and human diseases, the reserve is considered to be worsening if the group increased in abundance. For any particular guild, reserves with missing or zero values (no trend) are not included.

Figure 3 | Effects of improving on-the-ground protection on a relative index of reserve health. This positive relationship held across all three tropical continents (a general linear model showed that the protection term was the most effective predictor of reserve health (Akaike's information criterion weight, 0.595; deviance explained, 11.4%), with the addition of 'continent' providing only a small improvement in model fit (Akaike's information criterion weight, 0.317; deviance explained, 16.3%).

potential drivers of declining reserve health, three of the most important predictors involved ecological changes outside reserves (declining forest cover, increasing logging and increasing fires outside reserves; Supplementary Fig. 6). The remainder involved changes within reserves (particularly declining forest cover and increasing hunting, as well as increasing logging and harvests of non-timber forest products; Supplementary Table 5).


Thus, changes both inside and outside reserves determine their ecological viability, with forest disruption (deforestation, logging and fires), and overexploitation of wildlife and forest resources (hunting

and harvests of non-timber forest products) having the greatest direct negative impacts. Other environmental changes, such as air and water pollution, increases in human population densities and climatic change (changes in total rainfall, ambient temperature, droughts and windstorms) generally had weaker or more indirect effects over the last 20 to 30 years (Supplementary Table 5).

Environmental degradation occurring around a protected area could affect biodiversity in many ways, such as by increasing reserve isolation, area and edge effects^{15–19}. However, we discovered that its effects are also more insidious: they strongly predispose the reserve itself to similar kinds of degradation. Nearly all (19 of 21) of the environmental drivers had positive slopes when comparing their direction and magnitude inside versus outside reserves (Fig. 5). Among these, 13 were significant even with stringent Bonferroni corrections (P < 0.0071) and 17 would have been significant if tested individually (P < 0.05). As expected, the associations were strongest for climate parameters but were also strong for variables describing air and water pollution, stream sedimentation, hunting, mining, harvests of non-timber forest products and fires. To a lesser extent, trends in forest cover, human populations, road expansion and automobile traffic inside reserves also mirror those occurring outside reserves (Fig. 5).

Our findings signal that the fates of tropical protected areas will be determined by environmental changes both within and around the reserves, and that pressures inside reserves often closely reflect those occurring around them. For many reasons, larger reserves should be more resilient to such changes^{15–22}, although we found that removing the effects of reserve area statistically did not consistently weaken the correlations between changes inside versus outside protected areas (Supplementary Table 6).

Our study reveals marked variability in the health of tropical protected areas. It indicates that the best strategy for maintaining biodiversity within tropical reserves is to protect them against their major proximate threats, particularly habitat disruption and overharvesting. However, it is not enough to confine such efforts to reserve interiors while ignoring their surrounding landscapes, which are often being rapidly deforested, degraded and overhunted^{5,6,13,15} (Fig. 5). A failure to limit interrelated internal and external threats could predispose reserves to ecological decay, including a taxonomically and functionally

Figure 4 Comparison of ecological changes inside versus outside protected areas, for selected environmental drivers. The image is an example of the strong distinction in disturbance inside versus outside a reserve. The bars show the percentages of reserves with improving versus worsening conditions.

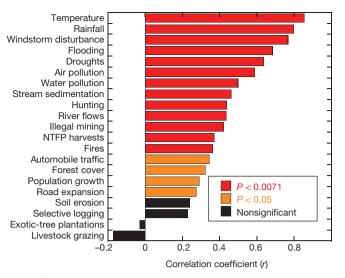


Figure 5 | Pearson correlations comparing the direction and strength of 21 environmental drivers inside versus outside tropical protected areas. NTFP, non-timber forest products.

sweeping array of changes in species communities (Fig. 2) and an erosion of fundamental ecosystem processes^{16,18,23}.

Protected areas are a cornerstone of efforts to conserve tropical biodiversity^{3,4,13,21}. It is not our intent to diminish their crucial role but to highlight growing challenges that could threaten their success. The vital ecological functions of wildlife habitats surrounding protected areas create an imperative, wherever possible, to establish sizeable buffer zones around reserves, maintain substantial reserve connectivity to other forest areas and promote lower-impact land uses near reserves by engaging and benefiting local communities^{4,15,24–27}. A focus on managing both external and internal threats should also increase the resilience of biodiversity in reserves to potentially serious climatic change $^{28-30}$ in the future.

METHODS SUMMARY

Our interview protocol, rationale, questionnaire and data analyses are detailed in the Supplementary Information. We selected protected areas broadly to span the African, American and Asia-Pacific tropics (Supplementary Fig. 1), focusing on sites with mostly tropical or subtropical forest that had at least 10 refereed publications and 4-5 researchers with long-term experience who could be identified and successfully interviewed.

We devised a robust and relatively simple statistical approach to assess temporal changes in the abundance of each guild and in each potential environmental driver across our reserve network (see Supplementary Information). In brief, this involved asking each expert whether each variable had markedly increased, remained stable or markedly declined for each reserve. These responses were scored as 1, 0 and -1, respectively. For each response, the expert was also asked to rank their degree of confidence in their knowledge. After discarding responses with lower confidence, scores from the individual experts at each site were pooled to generate a mean value (ranging from -1.0 to 1.0) to estimate the long-term trend for each variable.

The means for each variable across all 60 sites were then pooled into a single data distribution. We used bootstrapping (resampling with replacement; 100,000 iterations) to generate confidence intervals for the overall mean of the data distribution. If the confidence intervals did not overlap zero, then we interpreted the trend as being non-random. Because we tested many different guilds, we used a stringent Bonferroni correction ($P \le 0.0056$) to reduce the likelihood of Type I statistical errors, although we also identified guilds that showed evidence of trends $(P \le 0.05)$ if tested individually. For comparison, we estimated effect sizes (bootstrapped mean divided by s.d., with negative values indicating declines) for changes in guild abundances and for potential drivers inside and outside reserves (Supplementary Tables 2-4).

Received 24 February; accepted 14 June 2012. Published online 25 July 2012.

Pimm, S. L. & Raven, P. R. Biodiversity: extinction by numbers. Nature 403, 843-845 (2000).

- Bradshaw, C. J. A., Sodhi, N. S. & Brook, B. W. Tropical turmoil—a biodiversity tragedy in progress. Front. Ecol. Environ 7, 79-87 (2009).
- Gibson, L. et al. Primary forests are irreplaceable for sustaining tropical biodiversity. Nature 478, 378-381 (2011).
- Bruner, A. G., Gullison, R., Rice, R. & da Fonseca, G. Effectiveness of parks in protecting tropical biodiversity. *Science* **291**, 125–128 (2001). Curran, L. M. *et al.* Lowland forest loss in protected areas of Indonesian Borneo.
- Science 303, 1000-1003 (2004).
- DeFries, R., Hansen, A., Newton, A. C. & Hansen, M. C. Increasing isolation of protected areas in tropical forests over the past twenty years. Ecol. Appl. 15, 19-26
- Lovejoy, T. E. Protected areas: A prism for a changing world. Trends Ecol. Evol. 21, 329-333 (2006).
- Possingham, H. P., Wilson, K. A., Andelman, S. J. & Vynne, C. H. in Principles of Conservation Biology (eds Groom, M. J., Meffe, G. K. & Carroll, C. R.) (Sinauer, 2006).
- Joppa, L. N., Loarie, S. & Pimm, S. L. On the protection of "protected areas". *Proc.* Natl Acad. Sci. USA 105, 6673-6678 (2008).
- Jenkins, C. N. & Joppa, L. Expansion of the global terrestrial protected area system. *Biol. Conserv.* **142**, 2166–2174 (2009).
- Asner, G. P. et al. Selective logging in the Brazilian Amazon. Science 310, 480-482 (2005)
- Wright, S. J., Sanchez-Azofeifa, G., Portillo-Quintero, C. & Davies, D. Poverty and corruption compromise tropical forest reserves. Ecol. Appl. 17, 1259-1266
- 13. Adeney, J. M., Christensen, N. & Pimm, S. L. Reserves protect against deforestation fires in the Amazon. PLoS ONE 4, e5014 (2009).
- Peres, C. A., Barlow, J. & Laurance, W. F. Detecting anthropogenic disturbance in tropical forests. Trends Ecol. Evol. 21, 227-229 (2006).
- 15. Hansen, A. J. & DeFries, R. Ecological mechanisms linking protected areas to surrounding lands. Ecol. Appl. 17, 974-988 (2007).
- Laurance, W. F. et al. Biomass collapse in Amazonian forest fragments. Science **278**, 1117-1118 (1997).
- Woodroffe, R. & Ginsberg, J. R. Edge effects and the extinction of populations inside protected areas. Science 280, 2126-2128 (1998)
- Terborgh, J. et al. Ecological meltdown in predator-free forest fragments. Science **294**, 1923-1926 (2001).
- Laurance, W. F. et al. The fate of Amazonian forest fragments: a 32-year investigation. Biol. Conserv. 144, 56-67 (2011).
- Brooks, T. M., Pimm, S. L. & Oyugi, J. O. Time lag between deforestation and bird extinction in tropical forest fragments. Conserv. Biol. 13, 1140-1150 (1999).
- Peres, C. A. Why we need megareserves in Amazonia. Conserv. Biol. 19, 728-733 (2005)
- Maiorano, L., Falcucci, A. & Boitani, L. Size-dependent resistance of protected areas to land-use change. Proc. R. Soc. B 275, 1297-1304 (2008).
- Estes, J. A. et al. Trophic downgrading of Planet Earth. Science 333, 301–306 (2011).
- Wells, M. P. & McShane, T. O. Integrating protected area management with local needs and aspirations. Ambio 33, 513-519 (2004).
- Scherl, L. M. et al. Can Protected Areas Contribute to Poverty Reduction? Opportunities and Limitations (IUCN, 2004).
- Chan, K. M. A. & Daily, G. C. The payoff of conservation investments in tropical countryside. Proc. Natl Acad. Sci. USA 105, 19342-19347 (2008).
- Porter-Bolland, L. et al. Community-managed forests and protected areas: an assessment of their conservation effectiveness across the tropics. For. Ecol. Manage. 256, 6-17 (2012).
- Thomas, C. D. et al. Extinction risk from climate change. Nature 427, 145-148 (2004)
- Sekercioglu, C. H., Schneider, S. H., Fay, J. P. & Loarie, S. R. Climate change elevational range shifts, and bird extinctions. Conserv. Biol. 22, 140-150 (2008).
- Shoo, L. P. et al. Targeted protection and restoration to conserve tropical biodiversity in a warming world. Glob. Change Biol. 17, 186-193 (2011).

Supplementary Information is linked to the online version of the paper at www.nature.com/nature.

Acknowledgements The study was supported by James Cook University, the Smithsonian Tropical Research Institute, an Australian Laureate Fellowship (to W.F.L.) and NSF grant RCN-0741956. We thank A. Bruner, R. A. Butler, G. R. Clements, R. Condit, C. N. Cook, S. Goosem, J. Geldmann, L. Joppa, S. L. Pimm and O. Venter for comments.

Author Contributions W.F.L. conceived the study and coordinated its design, analysis and manuscript preparation. D.C.U., J.R. and M.K. conducted the interviews; C.J.A.B. assisted with data analysis and some writing; and S.P.S., S.G.L., M.C. and W.L. organized data or collected metadata. The remaining authors provided detailed interviews on protected areas and offered feedback on the manuscript.

Author Information Reprints and permissions information is available at www.nature.com/reprints. The authors declare no competing financial interests. Readers are welcome to comment on the online version of this article at www.nature.com/nature. Correspondence and requests for materials should be addressed to W.F.L. (bill.laurance@jcu.edu.au).

William F. Laurance^{1,2}, D. Carolina Useche², Julio Rendeiro², Margareta Kalka², Corey J. A. Bradshaw³, Sean P. Sloan¹, Susan G. Laurance¹, Mason Campbell¹, Kate

Abernethy⁴, Patricia Alvarez⁵, Victor Arroyo-Rodriguez⁶, Peter Ashton⁷, Julieta Benítez-Malvido⁶, Allard Blom⁸, Kadiri S. Bobo⁹, Charles H. Cannon¹⁰, Min Cao¹⁰, Richard Carroll⁸, Colin Chapman¹¹, Rosamond Coates¹², Marina Cords¹³, Finn Danielsen¹⁴, Bart De Dijn¹⁵, Eric Dinerstein⁸, Maureen A. Donnelly¹⁶, David Edwards¹, Felicity Edwards¹, Nina Farwig¹⁷, Peter Fashing¹⁸, Pierre-Michel Forget¹⁹, Mercedes Foster²⁰, George Gale²¹, David Harris²², Rhett Harrison¹⁰, John Hart²³, Sarah Karpanty²⁴, W. John Kress²⁵, Jagdish Krishnaswamy²⁶, Willis Logsdon¹, Jon Lovett²⁷, William Magnusson²⁸, Fiona Maisels^{4,29}, Andrew R. Marshall³⁰, Deedra McClearn³¹, Divya Mudappa³², Martin R. Nielsen³³, Richard Pearson³⁴, Nigel Pitman⁵, Jan van der Divya Mudappa³², Martin R. Nielsen³³, Richard Pearson³⁴, Nigel Pitman⁵, Jan van der Ploeg³⁵, Andrew Plumptre³⁶, John Poulsen³⁷, Mauricio Quesada⁶, Hugo Rainey²⁹, Douglas Robinson³⁸, Christiane Roetgers¹, Francesco Rovero³⁹, Frederick Scatena⁴⁰, Christian Schulze⁴¹, Douglas Sheii⁴², Thomas Struhsaker⁵, John Terborgh⁵, Duncan Thomas³⁸, Robert Timm⁴³, J. Nicolas Urbina-Cardona⁴⁴, Karthikeyan Vasudevan⁴⁵, S. Joseph Wright², Juan Carlos Arias-G.⁴⁶, Luzmila Arroyo⁴⁷, Mark Ashton⁴⁸, Philippe Auzel¹¹, Dennis Baboasa⁴⁹, Fred Babweteera⁵⁰, Patrick Baker⁵¹, Olaf Banki⁵², Margot Bass⁵³, Inogwabini Bila-Isia⁵⁴, Stephen Blake²⁹, Warren Brockelman⁵⁵, Nicholas Brokaw⁵⁶, Carsten A. Brühl⁵⁷, Sarayudh Bunyavejchewin⁵⁸, Jung-Tai Chao⁵⁹, Jerome Chave⁶⁰ Ravi Chellam⁶¹, Connie J. Clark⁵, José Clavijo⁶², Robert Congdon³⁴, Richard Corlett⁶³, H. S. Dattaraja⁶⁴, Chittaranjan Dave⁶⁵, Glyn Davies⁶⁶, Beatriz de Mello Beisiegel⁶⁷, Rosa de Nazaré Paes da Silva⁶⁸, Anthony Di Fiore⁶⁹, Arvin Diesmos⁷⁰, Rodolfo Dirzo⁷¹, Diane Doran-Sheehv⁷², Mitchell Eaton⁷³, Louise Emmons²⁵. Corlett⁶³, H. S. Dattaraja⁶⁴, Chittaranjan Dave⁶⁵, Glyn Davies⁶⁶, Beatriz de Mello Beisiegel⁶⁷, Rosa de Nazaré Paes da Silva⁶⁸, Anthony Di Fiore⁶⁹, Arvin Diesmos⁷⁰, Rodolfo Dirzo⁷¹, Diane Doran-Sheehy⁷², Mitchell Eaton⁷³, Louise Emmons²⁵, Alejandro Estrada¹², Corneille Ewango⁷⁴, Linda Fedigan⁷⁵, François Feer¹⁹, Barbara Fruth⁷⁶, Jacalyn Giacalone Willis⁷⁷, Uromi Goodale⁷⁸, Steven Goodman⁷⁹, Juan C. Guix⁸⁰, Paul Guthiga⁸¹, William Haber⁸², Keith Hamer⁸³, Ilka Herbinger⁸⁴, Jane Hill³⁰, Zhongliang Huang⁸⁵, I Fang Sun⁸⁶, Kalan Ickes⁸⁷, Akira Itoh⁸⁸, Natália Ivanauskas⁹⁹, Betsy Jackes³⁴, John Janovec⁹⁰, Daniel Janzen⁴⁰, Mo Jiangming⁹¹, Chen Jin¹⁰, Trevor Jones⁹², Herrnes Justiniano⁹³, Elisabeth Kalko⁹⁴, Aventino Kasangaki⁹⁵, Timothy Killeen⁹⁶, Hen-biau King⁹⁷, Erik Klop⁹⁸, Cheryl Knott⁹⁹, Inza Koné¹⁰⁰, Enoka Kudavidanage⁶³, José Lahoz da Silva Ribeiro¹⁰¹, John Lattke¹⁰², Richard Laval¹⁰³, Robert Lawton¹⁰⁴, Miguel Leal¹⁰⁵, Mark Leighton¹⁰⁶, Miguel Lentino¹⁰⁷, Cristiane Leonel¹⁰⁸, Jeremy Lindsell¹⁰⁹, Lee Ling-Ling¹¹⁰, K. Eduard Linsenmair¹¹¹, Elizabeth Losos¹¹², Ariel Lugo¹¹³, Jeremiah Lwanga¹¹⁴, Andrew L. Mack¹¹⁵, Marlucia Martins¹¹⁶, W. Scott McGraw¹¹⁷, Roan McNab¹¹⁸, Luciano Montag¹¹⁹, Jo Myers Thompson¹²⁰, Jacob Nabe-Nielsen¹²¹, Michiko Nakagawa¹²², Sanjay Nepal¹²³, Marilyn Norconk¹²⁴, Vojtech Novotny¹²⁵, Sean O'Donnell¹²⁶, Muse Opiang¹²⁷, Paul Ouboter¹²⁸, Kenneth Parker¹²⁹, N. Parthasarathy¹³⁰, Kátia Pisciotta¹³¹, Dewi Praviradilaga¹³², Catherine Pringle¹³³, Subaraj Rajathurai¹³⁴, Ulrich Reichard¹³⁵, Gay Reinartz¹³⁶, Katherine Renton¹³⁷, Glen Reynolds¹³⁸, Vernon Reynolds¹³⁹, Erin Riley¹⁴⁰, Mark-Oliver Rödel¹⁴¹, Jessica Rothman¹⁴², Philip Round¹⁴³, Shoko Sakal¹⁴⁴, Tania Sanaiotti²⁸, Tommaso Savini²¹, Gertrud Schaab¹⁴⁵, John Seidensticker¹⁴⁶, Alhaji Siakal¹⁴⁷, Miles R. Silman¹⁴⁸, Thomas B. Smith¹⁴⁹, Samuel Soares de Almeida Zamzani¹⁶⁶

¹Centre for Tropical Environmental and Sustainability Science (TESS) and School of Marine and Tropical Biology, James Cook University, Cairns, Queensland 4878, Australia. ²Smithsonian Tropical Research Institute, Balboa, Ancón, Panama. ³School of Earth and Environmental Sciences, University of Adelaide, Adelaide, South Australia 5005, Australia. ⁴Stirling University, Stirling FK9 4LA, UK. ⁵Duke University, Durham, North Carolina 27705, USA. ⁶Universidad Nacional Autónoma de México (UNAM), Morelia, Mexico. ⁷Royal Botanic Gardens, Kew, Richmond TW9 3AB, UK. ⁸World Wildlife Fund (WWF), Washington DC 20037, USA. ⁹University of Dschang, Dschang, Cameroon. ¹⁰Xishuangbanna Tropical Botanical Garden, Yunnan 666303, People's Republic of China. ¹¹McGill University, Montreal H3A 2T7, Canada. ¹²Estación de Biologia Tropical Los Tuxtlas, University, Montrean 13X 217, Variada. Estacion de Diología riopical Los Tuxtlas, Universidad Nacional Autónoma de México, Veracruz 95701, Mexico.

¹³Columbia University, New York, New York 10027, USA. ¹⁴Nordic Foundation for Development and Ecology, DK-1159 Copenhagen, Denmark. ¹⁵Bart De Dijn Environmental Consultancy, Paramaribo, Suriname. ¹⁶Florida International University, Miami, Florida 33199, USA. ¹⁷Philipps-Universität Marburg, Marburg 35043, Germany.

¹⁸Collection Collection (1986) ¹⁸California State University, Fullerton, California 92834, USA. ¹⁹Museum Natural d'Histoire Naturelle, 91800 Brunoy, France. ²⁰US Geological Survey, Smithsonian Institution, Washington DC 20013, USA. ²¹King Mongkut's University of Technology Thonburi, Bangkok 10150, Thailand. ²²Royal Botanic Garden, Edinburgh, Scotland EH3 5LR, UK. ²³Tshuapa-Lomami-Lualaba Project, Kinshasa, Democratic Republic of Congo. ²⁴Virginia Tech University, Blacksburg, Virginia 24061, USA. ²⁵National Museum of ²⁻⁴Virginia Tech University, Blacksburg, Virginia 24061, USA. ²⁻⁹National Museum of Natural History, Smithsonian Institution, Washington DC 20013, USA. ²⁻⁶Ashoka Trust for Research in Ecology and the Environment (ATREE), Bangalore 560064, India. ²⁻⁷University of Twente, Enschede, Netherlands. ²⁻⁸Instituto Nacional de Pesquisas da Amazônia (INPA), Manaus, Amazonas 69011-970, Brazil. ²⁻⁹Wildlife Conservation Society, Bronx, New York 10460, USA. ³⁰University of York, Heslington, York Y010 5DD, UK. ³¹La Selva Biological Station, San Pedro, Costa Rica. ³²Nature Conservation Foundation, Mysore 570 002, India. ³³University of Copenhagen, Copenhagen, Denmark. ³⁴James Cook University, Townsville, Queensland 4811, Australia. ³⁵Leiden University, Leiden, Netherlands. ³⁶Wildlife Conservation Society, Kampala, Liganda. ³⁷Woods Hole Recognition Contrar. ³⁷Wildlife Conservation Society, Kampala, Uganda. ³⁷Woods Hole Research Center, Falmouth, Massachusetts 02540, USA. ³⁸Oregon State University, Corvallis, Oregon 97331, USA. ³⁹Museo delle Scienze, 38122 Trento, Italy. ⁴⁰University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA. ⁴¹University of Vienna, 1030 Vienna, Austria. ⁴²Bwindi Impenetrable National Park, Kabale, Uganda. ⁴³University of Kansas, Lawrence, Kansas 66045, USA. ⁴⁴Pontificia Universidad Javeriana, Bogotá, Colombia. ⁴⁵Wildlife Institute of India, Dehradun, India. ⁴⁶Unidad de Parques Nacionales Naturales de

Colombia, Bogotá, Colombia. ⁴⁷Museo de Historia Natural Noel Kempff, Santa Cruz, Bolivia. ⁴⁸Yale University, New Haven, Connecticut 06511, USA. ⁴⁹Institute of Tropical Forest Conservation, Kabale, Uganda. ⁵⁰Budongo Conservation Field Station, Masindi, Uganda. ⁵¹Monash University, Melbourne, Victoria 3800, Australia. ⁵²Utrecht University, Utrecht, Netherlands. ⁵³Finding Species, Takoma Park, Maryland 20912, USA. ⁵⁴University of Kent, Kent CT2 7NZ, UK. ⁵⁵Mahidol University Salaya, Nakhon Pathom 73170, Thailand. ⁵⁶University of Puerto Rico, San Juan 00936, Puerto Rico. ⁵⁷University Koblenz-Landau, D-76829 Landau, Germany. ⁵⁸Department of National Parks, Chatuchak, Bangkok 10900, Thailand. ⁵⁹Taiwan Forestry Research Institute, Tapei 10066, Taiwan. ⁶⁰Université Paul Sabatier, Toulouse, France. ⁶¹Wildlife Conservation Society, Bangalore 560070, India, ⁶²Universidad Central de Venezuela, Aragua, Venezuela, ⁶⁵National University of Singapore, Singapore 117543. ⁶⁴Indian Institute of Science, Bangalore 560012, India. ⁶⁵World Wide Fund for Nature (WWF), New Delhi 110003, India. ⁶⁶World Wide Fund for Nature (WWF), Surrey GU7 1XR, UK. ⁶⁷Instituto Chico Mendes de Conservação de Biodiversidade, Atibaia, São Paulo 12952-011, Brazil. Philippines, Manila, Philipines. "Stanford University, Stanford, California 24300, UGA. 72 State University of New York at Stony Brook, Stony Brook, New York 11794, USA. 73 University of Colorado, Boulder, Colorado 80309, USA. 74 Wildlife Conservation Society, Kinshasa, Democratic Republic of Congo. 75 University of Colorady, Alberta T2N 1N4, Canada. ⁷⁶Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany. ⁷⁷Montclair State University, Montclair, New Jersey 07043, USA. ⁷⁸University of California, San Diego, California 92093, USA. ⁷⁹Field Museum of Natural History, Chicago, Illinois 60605, USA. 80 Universitat de Barcelona, 08028 Barcelona, Spain. 81 Kenya Institute for Public Policy Research and Analysis, Nairobi, Kenya. 82 Missouri Botanical Garden, St. Chimpanzee Foundation, Abidjan 23, Cote d'Ivoire. 85 Dinghushan Biosphere Reserve, Zhaoqing, People's Republic of Chima. 86 Tunghai University, Taichung 407, Taiwan. 87 Clemson University, Clemson, South Carolina 29634, USA. 88 Osaka City University, 280 Course of Chima. 89 Clemson University, Clemson, South Carolina 29634, USA. 88 Osaka City University, 280 Course of Chima. 89 Clemson University, Clemson, South Carolina 29634, USA. 88 Osaka City University, 280 Course of Chima Carolina 29634, USA. 88 Osaka City University, 280 Course of Chima Carolina 29634, USA. Osaka 558-8585, Japan. ⁸⁹Instituto Florestal, São Paulo, São Paulo 02377-000, Brazil. ⁹⁰Botanical Research Institute of Texas, Fort Worth, Texas 76107, USA. ⁹¹South China Botanical Garden, Guangzhou 510650, People's Republic of China. ⁹²Anglia Ruskin University, Cambridge CB1 1PT, UK. ⁹³Fundación para la Conservación del Bosque Chiquitano, Bolivia. ⁹⁴University of Ulm, 89069 Ulm, Germany. ⁹⁵Mbarara University of Science and Technology, Mbarara, Uganda. ⁹⁶Conservation International, Arlington, Virginia 22202, USA. ⁹⁷Society of Subtropical Ecology, Taipei, Taiwan. ⁹⁸Royal Haskoning, Water and Ecology Group, Groningen, Netherlands. ⁹⁹Boston University, Boston, Massachusetts 02215, USA. ¹⁰⁰Centre Suisse de Recherches Scientifiques en Côte d'Ivoire, Abidjan, Côte d'Ivoire. ¹⁰¹Universidade Estadual de Londrina, Londrina, Paraná, Brazil. ¹⁰²Universidad Central de Venezuela, Caracas, Venezuela. ¹⁰³The Bat Jungle, Monteverde, Costa Rica. ¹⁰⁴University of Alabama, Huntsville, Alabama 35899, USA. ¹⁰⁵Boîte Postale 7847, Libreville, Gabon. ¹⁰⁶Sb Warren Road, Framingham, Massachusetts 01702, USA. ¹⁰⁷Colección Ornitológica Phelps, Caracas, Venezuela. ¹⁰⁸Parque Estadual Horto Florestal, São Paulo, São Paulo 02377-000, Brazil. ¹⁰⁹Royal Osaka 558-8585, Japan. ⁸⁹Instituto Florestal, São Paulo, São Paulo 02377-000, Brazil. 108 Parque Estadual Horto Florestal, São Paulo, São Paulo 02377-000, Brazil. 109 Royal Society for the Protection of Birds, Sandy SG19 2DL, UK. 110 National Taiwan University, Taipei, Taiwan. 111 University of Würzburg, Biocenter, D97074 Wuerzburg, Germany. ¹¹²Organization for Tropical Studies, Durham, North Carolina 27705, USA. ¹¹³USDA International Institute of Tropical Forestry, Río Piedras, Puerto Rico 00926. 114 Makerere International Institute of Tropical Forestry, Rio Pieuras, Fuerto Nico 00220. International University, Kampala, Uganda. ¹¹⁵Green Capacity Inc., New Florence, Pennsylvania 15944, USA. ¹¹⁶Museu Paraense Emílio Goeldi, Belém, Pará 66040-170, Brazil. ¹¹⁷Ohio State University, Columbus, Ohio 43210, USA. ¹¹⁸Wildlife Conservation Society, Flores, Guatemala. ¹¹⁹Universidad Federal do Pará, Belém, Pará 66040-170, Brazil. ¹²⁰Lukuru Guatemaia. ********Universidad Federal do Pará, Belém, Pará 66040-170, Brazil. ******120 Lukuru Wildlife Research Foundation, Kinshasa, Democratic Republic of Congo. ***121 Aarhus University, 4000 Roskilde, Denmark. **122 Nagoya University, Nagoya, Japan. **123 University of Waterloo, Waterloo, Ontario N2L 3G1, Canada. **124 Kent State University, Kent, Ohio 44242, USA. **125 Institute of Entomology, Ceske Budejovice, Czech Republic. **126 University of Washington, Seattle, Washington 98195, USA. **127 PNG Institute of Biological Research, Goroka, Papua New Guinea. **128 University of Suriname, Paramaribo, Suriname. **129 113-3885 Richet Rd, Prince George, British Columbia V2K 2J2, Canada. **130 Pondicherry University. Pudlucherry 605-014 India **131 Eundas & Elemental São Poulo **131 Eundas & Elemental São Poulo **132 Eundas & Elemental **132 Eundas & Elemental São Poulo **132 Eundas & Elemental São Poulo **132 Eundas & Elemental * ¹³⁰Pondicherry University, Puducherry 605-014, India. ¹³¹Fundação Florestal, São Paulo, São Paulo 02377-000, Brazil. ¹³²Research Centre for Biology, Cibinong 16911, Indonesia. ¹³³University of Georgia, Athens, Georgia 30602, USA. ¹³⁴Strix Wildlife Consultancy, Singapore. 135Southern Illinois University, Carbondale, Illinois 62901, USA. ¹³⁶Zoological Society of Milwaukee, Milwaukee, Wisconsin 53226, USA. ¹³⁷Estación de Biologia Chamela, Universidad Nacional Autónoma de México, Jalisco 48980, Mexico. Biologia Čhamela, Universidad Nacional Autónoma de México, Jalisco 48980, Mexico. 138 Danum Valley Field Centre, Sabah, Malaysia. 139 Oxford University, Oxford BN26 5UX, UK. 140 San Diego State University, San Diego, California 92182, USA. 141 Museum für Naturkunde, Berlin, Germany. 142 City University of New York, New York 10065, USA. 143 Mahidol University, Bangkok 10400, Thailand. 144 Research Institute for Humanity and Nature, Kyoto, Japan. 145 Karlsruhe University of Applied Sciences, Karlsruhe, Germany. 146 National Zoological Park, Washington DC 20013, USA. 147 Gola Forest Programme, Kenema, Sierra Leone. 148 Wake Forest University, Winston-Salem, North Carolina 27106, USA. 149 University of California, Los Angeles, California 90095, USA. 150 Av. Maalhäes Barata 376, Belém, Pará 66040-170, Brazil. 151 University of Southern California, Los Angeles, California 90089, USA. 152 Institute of Applied Ethnobotany, Pompano Beach, Florida 33069, USA. 155 Texas A & M University, Kingsville Texas 78363, USA. 154 Indian. Florida 33069, USA. 153 Texas A & M University, Kingsville, Texas 78363, USA. 154 Indian Institute of Science, Bangalore, India. ¹⁵⁵Georg-August-Universität, Göttingen, Germany. ¹⁵⁶Wildlife Conservation Society, Bangui, Central African Republic. ¹⁵⁷Centre for Cellular and Molecular Biology, Hyderabad, India. 158701, Vesta B, Lodha Paradise, Thane, India. ¹⁵⁹Paluma Environmental Education Centre, Paluma, Queensland 4816, Australia. ¹⁶⁰Universidad Central de Venezuela, Maracay, Venezuela. ¹⁶¹Embrapa Roraima, Boa Vista, Roraima, Brazil. ¹⁶²Treasure Valley Math and Science Center, Boise, Idaho 83714, VISA. 163Rice University, Houston, Texas 77005, USA. 164Stony Brook University, Stony Brook, New York 11794, USA. 165Resources Himalaya Foundation, Kathmandu, Nepal. ¹⁶⁶Gunung Palung National Park, West Kalimantan, Indonesia. †Deceased.